ENVIRONMENTAL SUSTAINABILITY OF INFORMATION AND COMMUNICATION TECHNOLOGY (ICT) FOR SMART GRIDS

AN E-LCA STUDY OF ICT IN SMART GRIDS

Slavisa Aleksic

Deutsche Telekom AG

Institute of Communications Engineering Hochschule für Telekommunikation Leipzig (HfTL)/University of Applied Sciences Leipzig Leipzig, Germany

- 2. Exergy-based Life Cycle Assessment (E-LCA)
- 3. E-LCA of Advanced Metering Infrastructure (AMI)
- 4. E-LCA of ICT for Smart Grids

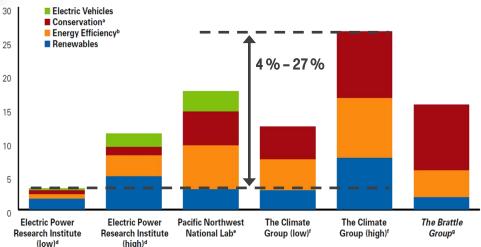
5. Conclusions

2. Exergy-based Life Cycle Assessment (E-LCA)

- 3. E-LCA of Advanced Metering Infrastructure (AMI)
- 4. E-LCA of ICT for Smart Grids

5. Conclusions

THE PROMISE OF THE SMART GRID


Goals

- Improvement of energy efficiency
- Integration of renewable energy sources
- Reduce peak demand

The Smart Grid concept is mainly driven by

- Distributed generation
- Energy storage systems
- Demand side management

Potential CO₂ Reductions (Results from 4 Studies)

Source: "The Promise of the Smart Grid: Goals, Policies, and Measurement Must Support Sustainability Benefits", Natural Resources Defense Council, 2012

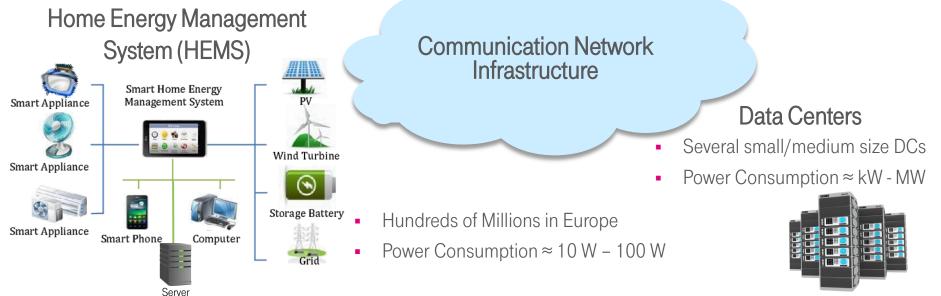
CoBCom 2020

Prof. Dr. Slavisa Aleksic

ICT FOR SMART GRIDS

Deployment of <u>additional ICT equipment</u> in various smart grid domains (e.g., customer, distribution, operations) will lead to a <u>further increase in electricity consumption and additional e-waste</u>

ADDITIONAL ICT EQUIPMENT


Smart Meters

- Hundred Millions in Europe
- Power Consumption ≈ 1 W 5 W

Data Concentrators

- Hundreds of Thousands in Europe
- Power Consumption ≈ 10 W

2. Exergy-based Life Cycle Assessment (E-LCA)

- 3. E-LCA of Advanced Metering Infrastructure (AMI)
- 4. E-LCA of ICT for Smart Grids
- 5. Conclusions

COMPARISON BETWEEN THERMODYNAMIC INDICATORS

Indicator Type	Advantage	Disadvantage
Energy analysis	 Enables energy assessment and evaluation by the use of <u>the first law</u> <u>of thermodynamics</u> 	 <u>Different forms of energy cannot be</u> <u>directly compared</u> <u>Environmental effects cannot be</u> <u>directly assessed</u>
Life cycle assessment (LCA)	Allows a <u>very detailed and thorough</u> <u>assessment</u> of environmental effects	 <u>Difficult</u> to derive <u>Lack of a simple</u> and unambiguous <u>outcome</u> for easy comparison purposes
Exergy-based life cycle assessment (E-LCA)	 <u>Different forms of energy</u> can be directly compared <u>Simpler</u> to obtain than a LCA Leads to a <u>single value for easy comparison</u> purposes 	Does <u>not allow a thorough assessment</u> of environmental effects

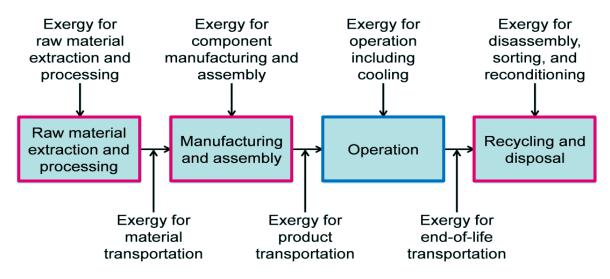
CRADLE-TO-GRAVE APPROACH

Most studies concentrate on the <u>operation or use phase</u> of ICT equipment <u>only</u>

Drawback: <u>Other life cycle stages</u> of ICT equipment not considered, such as:

Raw material extraction and processing

Manufacturing and assembly



Transportation

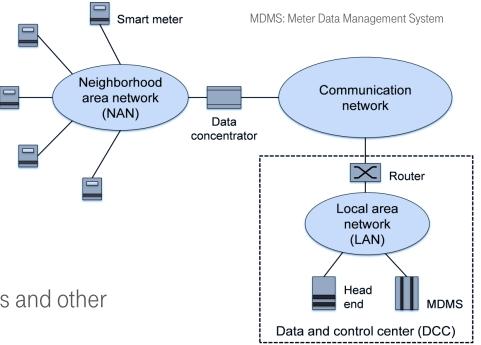
Disposal and recycling

EXERGY CONSUMPTION IN DIFFERENT LIFE CYCLE STAGES

- Embodied exergy consumption (EEC): exergy consumed during raw material extraction and processing, manufacturing and assembly, recycling and disposal, as well as transportation of materials and products
- Operational exergy consumption (OEC): exergy consumed during the operational or use phase of the equipment

2. Exergy-based Life Cycle Assessment (E-LCA)

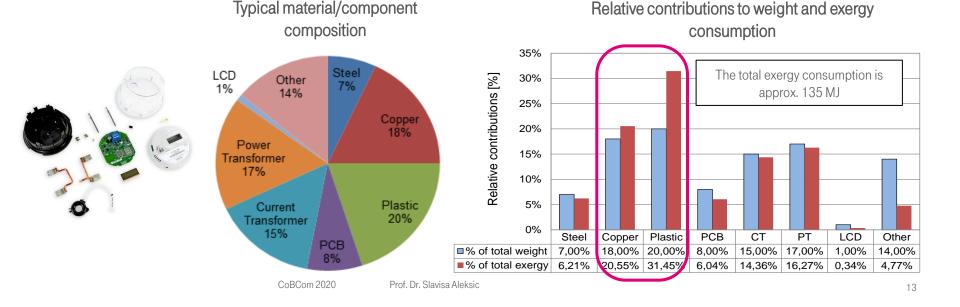
3. E-LCA of Advanced Metering Infrastructure


4. E-LCA of ICT for Smart Grids

5. Conclusions

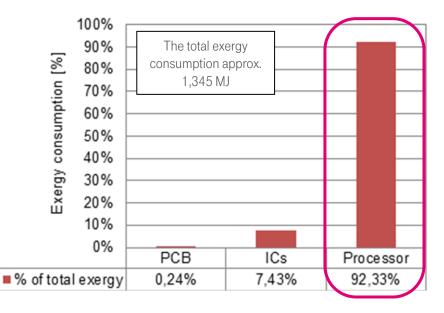
ADVANCED METERING INFRASTRUCTURE (AMI)

- Key enabling technology for Smart Grids
- Crucial component is the Smart Meter


- AMI enables:
 - two-way communication between the meter and the central system
 - better management of energy networks and more efficient consumption
- However, a large number of smart meters and other components have to be installed

SMART METERS

Row Material Extraction and Processing Phases


- First, we defined the typical material/component composition of smart meter
- Then, we applied a combined analytical and experimental analysis and used data from various sources with the aim to increase the data accuracy

SMART METERS MANUFACTURING AND ASSEMBLY PHASES

Relative contribution of some select manufacturing processes to the total exergy consumption of the manufacturing and assembly phase

 The <u>manufacturing of the processor</u> accounts for <u>more than 90%</u> of the total exergy consumption in this life cycle stage

SMART METERS OPERATION AND TRANSPORTATION PHASES

Operation

Main assumptions for the operation phase
--

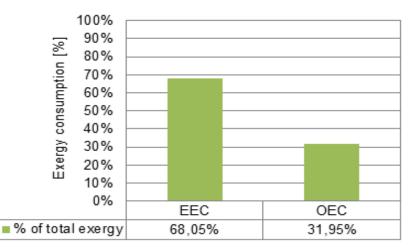
Operational parameter [unit]	Value		
Peak power consumption [W]	3		
Average load [%]	50		
Daily uptime [%]	100		
Operational duration [years]	15		
The total exergy consumption: 709.56 MJ			

Transportation

Main assumptions for transportation

Mode of transportation	Specific exergy [kJ/kg-km]		
Air	22.41		
Truck	2.096		
Rail	0.253		
Ship	0.296		
The total exergy consumption: 351.7 MJ			

SMART METERS


RECYCLING PHASE AND TOTAL EXERGY CONSUMPTION

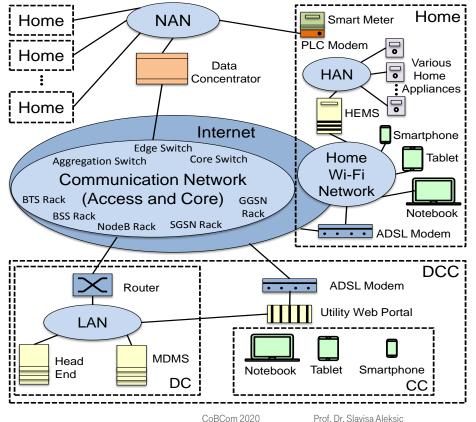
- Recycling and Disposal
 - An order of magnitude estimate approach was assumed
 - Exergy consumed: 520 kilo Joules per kilogram (kJ/kg)
 - The total exergy consumption approx. 1.2 MJ
- Overall Lifetime Exergy Consumption

Life cycle stage	Exergy consumption [MJ]		Exergy consumption [%]	
Raw material extraction and processing	3rd	135		6.08
Material transportation		7.15		0.32
Manufacturing and assembly	1st	1,345.16		60.57
Product transportation		19.55		0.88
Operation	2nd	709.56		31.95
End-of-life transportation		3.25		0.15
Recycling and disposal		1.2		0.05
Total		2,220.87		100

SMART METERS EMBODIED AND OPERATIONAL EXERGY

Lifetime embodied exergy consumption (EEC) and operational exergy consumption (OEC) distribution of the smart meter

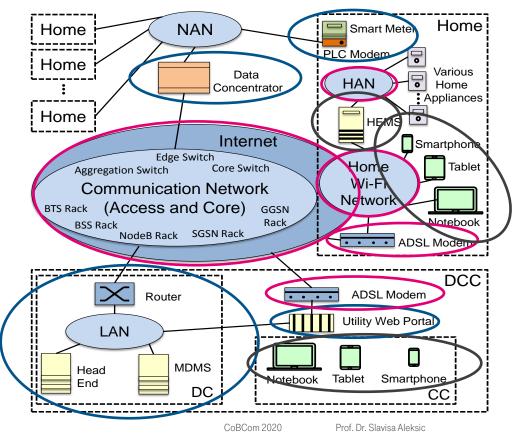
 The embodied exergy consumption (EEC) is responsible for <u>more than 68%</u> of the total exergy consumption


- 2. Exergy-based Life Cycle Assessment (E-LCA)
- 3. E-LCA of Advanced Metering Infrastructure (AMI)

4. E-LCA of ICT for Smart Grids

5. Conclusions

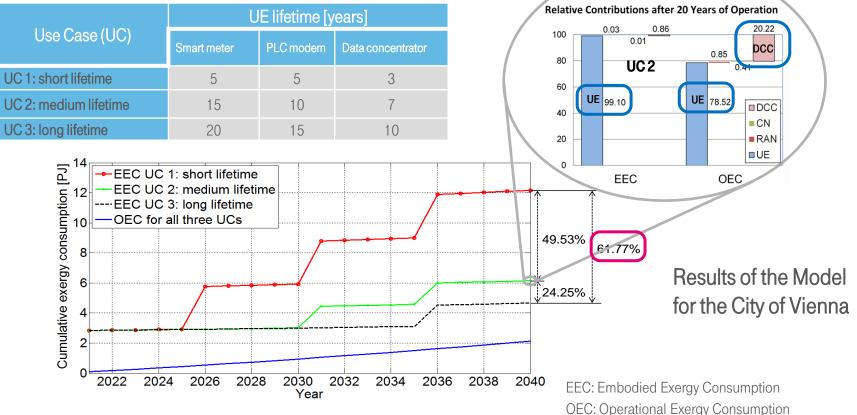
ICT FOR SMART GRIDS


OVERALL MODEL

PLC:	power line
	communication
HAN:	home area network
LAN:	local area network
WLAN:	wireless local area
	network
DSL:	digital subscriber line
HEMS:	home energy
	management system
NAN:	neighborhood
	area network
RAN:	radio access network
CN:	core network
MDMS:	meter data
	management system
UEMS:	utility energy
	management system
DC:	data center
CC:	control center
DCC:	data and control center

ICT FOR SMART GRIDS

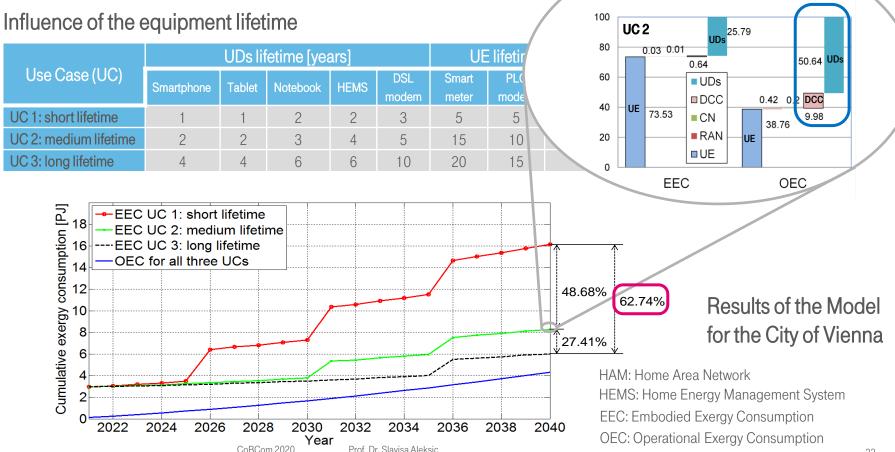
OVERALL MODEL



- <u>Utility Equipment</u> (UE):
 - smart meters
 - PLC modems
 - data concentrators
- Data and Control Center (DCC)
- Network Equipment:
 - BTS
 - BSC
 - Node B
 - RNC
 - Switches
 - Routers
 - Cables
- <u>User Devices</u> (UDs):
 - Smartphones
 - Tablets
 - Notebooks
 - HEMSs

SUSTAINABILITY OF ADVANCED METERING INFRASTRUCTURE (1)

Influence of the equipment lifetime


CoBCom 2020

Prof. Dr. Slavisa Aleksic

SUSTAINABILITY OF AMI/HAN

Relative Contributions after 20 Years of Operation

- 2. Exergy-based Life Cycle Assessment (E-LCA)
- 3. E-LCA of Advanced Metering Infrastructure (AMI)
- 4. E-LCA of ICT for Smart Grids

5. Conclusions

CONCLUSIONS (1)

- Smart Grids have the potential to improve the global energy efficiency
- The realization of the smart grid will only be possible by a pervasive deployment and use of <u>information and communication technologies (ICT)</u>
- However, additional ICT equipment will unavoidably lead to a <u>higher</u> <u>energy consumption</u> and an <u>impact on the environment</u>
- <u>Embodied exergy consumption</u> (EEC) is dominating
 - <u>Almost 2 times higher than the operational exergy consumption (OEC)</u>
 - Indicates the importance of considering the <u>entire lifecycle</u>

CONCLUSIONS (2)

- The most environmentally impacting lifecycle stage is the <u>manufacturing</u> and <u>assembly phase</u>
 - It accounts for <u>60% of the total</u> exergy consumption
 - The manufacturing of the processor counts for more than 90% of the total exergy consumption in this life cycle stage
- The contribution of <u>transportation</u> is less than <u>2% of the total</u>
- Increase of the equipment's lifetime can lead to a reduction of the cumulative embodied exergy consumption (EEC) by about 62%

Recommendations:

- Increase equipment's lifetime
- Improve efficiency of manufacturing and assembly processes
- Increase energy efficiency of servers and data centers

Thank you for your attention

Questions?

Contact:

aleksic@hft-leipzig.de

